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Abstract
We consider the interaction between an electrically polarizable atom in its
fundamental state and a wedge constituted by two semi-infinite perfectly
conducting plates. Using a formalism based on a master equation, we compute
the dispersion force on the atom for both retarded and non-retarded regimes.

PACS numbers: 12.20.Ds, 34.20.Cf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dispersion forces are generally understood as those that occur between neutral objects that do
not possess any permanent electric or magnetic moments, as the van der Waals force between
two neutral but polarizable atoms or between a polarizable atom and a wall. These forces
originate from the unavoidable quantum fluctuations, which are always present in nature and
cannot be neglected under certain circumstances. The dominant contribution to the interaction
of two neutral but polarizable objects comes from the dipole–dipole interaction, the only one
we shall be concerned with in this paper. Two distinct distance regimes are worth studying,
namely, the non-retarded regime (short distance regime) and the retarded one (large distance
regime). The occurrence of a dominant transition wavelength naturally fixes a length scale
which allows a characterization for these two regimes. Retardation effects become important
as soon as typical distances between the two interacting objects are of the order of the dominant
transition wavelength.

Since the seminal papers by London [1] (non-retarded force between two polarizable
atoms), by Casimir and Polder [2] (retardation effects on the London–van der Waals force
between two polarizable atoms and between an atom and a perfectly conducting plate) and
by Lifshitz [3] (who developed a general theory of dispersive van der Waals forces between
macroscopic dielectric bodies, valid also for T �= 0), a wide knowledge about dispersion
forces has been achieved: higher multiple moments and N-atoms interactions have been
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considered; non-additivity of these forces have been studied; the oscillatory behaviour of the
interaction between an excited atom and a wall has been obtained [4]; application of linear
response theory has been done [5]; electric and magnetic interactions have been treated in
equal footing [6]; atom–cavity interaction has been considered [7, 8]; thermal contribution to
the Casimir–Polder force has been computed [9]; the influence of the Casimir–Polder force
in Bose–Einstein condensates has been found [10, 11]; the importance of the Casimir–Polder
force in carbon nanotubes has been recognized [12]; for the computation of the force on
a neutral atom near some specific microstructures, see Eberlein and Zietal [13] (see also
references therein); and many others. Nowadays, dispersion forces are important in many
areas of science and find applications in quite unexpected situations varying from biology,
chemistry and physics to engineering and nanotechnology. For a recent discussion on this
subject from the point of view of macroscopic QED in linear media, which contains a detailed
historical survey as well as a vast list of references, see [14] and references therein. The first
experiment conceived to measure directly the atom–body interaction was done by Sukenik
et al [15]. These authors analysed the deflection of ground-state sodium atoms crossing a
micron-sized parallel-plate cavity (in fact, a wedge with a very small angle). The authors
conclusively confirmed the existence of retardation effects. There are other experiments as,
for example, the Orsay experiment, which measures the force between an atom and a dielectric
wall by analysing the reflection of atoms by evanescent-wave atomic mirrors [16], and the
Tokyo experiment, based on quantum reflection by the Casimir–Polder force [17] and even
measurements that employ the influence of dispersion forces on BEC [18].

Our purpose is to obtain the dispersion force, in any distance regime, exerted on an
electrically polarizable atom in ground state, which is near a wedge formed by two perfectly
conducting plates of infinite extent. The atom–wedge system has been considered before by
Brevik et al [19] but these authors computed the dispersion force on the atom only in the
retarded regime. They based their calculations in a previous work on the Casimir effect for a
perfectly conducting wedge [20] and the inclusion of a dielectric was done in [21]. Since the
wedge geometry was employed in the first measurement of the Casimir–Polder force [15] and
it may be convenient in future ones, we think it is of some relevance to generalize the results
in [19] by providing the calculation of the dispersion force also in the non-retarded regime.

2. Dispersion potential for the atom–wedge system

Consider an atom and a perfectly conducting wedge as indicated in figure 1, where ρ is the
distance between the atom and the corner, chosen as the OZ axis, and φ is the polar angle,
measured with respect to the OXZ plane. We shall employ a method developed by Dalibard
et al [22], based on a master equation to describe a small system interacting with a large one
(referred to as a reservoir). In our case the small system will be the atom, while the large
one will be the radiation field submitted to the appropriate boundary conditions imposed by
the wedge. This approach provides general expressions for the level shifts and energy exchange
rates of the system. Two contributions appear: one from the fluctuation of the reservoir,
denoted by f r , and the other from the reaction of the reservoir, denoted by rr .

The level shifts δEa for an atom in the state |a〉 interacting with the radiation field in the
dipole approximation are given by [23]

δEa = δErr
a + δEf r

a , (1)

δErr
a = −1

2

∑
j

∑
kλ

α
′(−)
aj (k)

∣∣f j

kλ(x)
∣∣2

, (2)

2
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Figure 1. Atom–wedge system: the figure on the right shows a transverse cut.

δEf r
a = −

∑
j

∑
kλ

α
′(+)
aj (k)

∣∣f j

kλ(x)
∣∣2

(
〈nkλ〉 +

1

2

)
, (3)

α
′(∓)
aj (k) =

∑
b

α
j

abkba

2

[
P

1

k + kba

± P
1

k − kba

]
, (4)

with the electric field being E(x, t) = ∑
kλ

(
fkλ(x) eıωkt a

†
kλ + f∗

kλ(x) e−ıωkt akλ

)
, where

ωk = kc, [akλ, ak′λ′] = [
a
†
kλ, a

†
k′λ′

] = 0,
[
akλ, a

†
k′λ′

] = δkk′δλλ′ ,P means the principal
part, kab = (Ea − Eb)/h̄c, so that |kab|c is the transition frequency between states |a〉 and
|b〉, 〈nkλ〉 is the average number of photons in the mode kλ and coefficients α

j

ab are defined as
α

j

ab = −2|〈a|dj |b〉|2/(h̄ckab), with dj being the j -component of its dipole moment operator
d = −er = −e(x1, x2, x3) = (d1, d2, d3). For convenience, we first consider the field modes
of a wedge with a coaxial cylindrical shell of radius R which will be taken to infinity at the
appropriate moment. The transverse electric (TE) and transverse magnetic (TM) modes of the
quantized electric field for this setup are borrowed from Saharian’s paper [24] and are given
by

fTM
k,m,n(x) = βqm(γ|m|,nR)

(
γ 2

|m|,nẑ − ıkz∇t

)
Jq|m|(γ|m|,nρ) sin(q|m|φ) e−ı(kzz−ωkt),

fTE
k,m,n(x) = ıkβqm(η|m|,nR)ẑ × ∇t [Jq|m|(η|m|,nρ) cos(q|m|φ) e−ı(kzz−ωkt)],

where m is an integer for TE modes and an integer different from zero for TM modes,

Jq|m|(γ|m|,nR) = J ′
q|m|(η|m|,nR) = 0, Xν(x) =

[
J ′2

ν (x) +

(
1 − ν2

x2

)
J 2

ν (x)

]−1

,

β2
qm(x) = 2qh̄c

πk
Xqm(x),

∇t = ρ̂∂ρ +
1

ρ
φ̂∂φ, q = π/φ0, k2 = κ2

mnλ + k2
z ,

κmn1 = γ|m|,n and κmn2 = η|m|,n.

The atom–boundary interaction is given by the position-dependent part of the energy shift
induced by the atom–field interaction (with appropriate BC). Computing first the (rr)

contribution, we have

δErr
a = −qh̄c

π

∫ ∞

−∞
dkz

∞∑
m=−∞

∞∑
n=1

∑
λ,σ

κ4
mnλXqm(κmnλR)√

κ2
mnλ + k2

z

α′(−)
aσ

(√
κ2

mnλ + k2
z

)
Qσ,λ

qmn(ρ, φ),
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where σ = ρ, φ, z, the index λ = 1, 2 refers to the TM and TE modes, respectively, and

Qρ,1
qmn(ρ, φ) = k2

z

κ2
mn1

J ′2
qm(κmn1ρ) sin2(qmφ),

Qφ,1
qmn(ρ, φ) = k2

z q
2m2

κ4
mn1ρ

2
J 2

qm(κmn1ρ) cos2(qmφ),

Qz,1
qmn(ρ, φ) = J 2

qm(κmn1ρ) sin2(qmφ), Qz,2
qmn(ρ, φ) = 0,

Qφ,2
qmn(ρ, φ) =

(
1 +

k2
z

κ2
mn2

)
J ′2

qm(κmn2ρ) cos2(qmφ),

Qρ,2
qmn(ρ, φ) =

(
1 +

k2
z

κ2
mn2

)
q2m2

κ2
mn2ρ

2
J 2

qm(κmn2ρ) sin2(qmφ).

Using the generalized Abel–Plana summation formula and taking R → ∞, we get [24]

δErr
a = −qh̄c

2π

∞∑
m=−∞

∫ ∞

−∞
dkz

∫ ∞

0

κ3dκ√
k2
z + κ2

∑
σ

α′(−)
aσ

(√
k2
z + κ2

)
Sσ

κqm(ρ, φ),

Sz
κqm(ρ, φ) = J 2

qm(κρ) sin2(qmφ),

Sφ
κqm(ρ, φ) =

[(
1 +

k2
z

κ2

)
J ′2

qm(κρ) +
k2
z q

2m2

κ4ρ2
J 2

qm(κρ)

]
cos2(qmφ),

Sρ
κqm(ρ, φ) =

[
k2
z

κ2
J ′2

qm(κρ) +

(
1 +

k2
z

κ2

)
q2m2

κ2ρ2
J 2

qm(κρ)

]
sin2(qmφ).

There is no need for a cut-off function: the polarizability guarantees the convergence of the
sums for the position-dependent part of δE(rr)

a . It can be shown by explicit calculations that
the (f r) contribution is obtained by α′(−)

aσ (k) −→ α′(+)
aσ (k)(2〈nkλ〉+1). A further simplification

is possible only for positive integer values of q(q = 1, 2, 3, . . .). Using a generalization of
the addition theorem for Bessel functions [25],

∞∑
m=−∞

Jqm(κρ)Zν+qm(κρ) e2ıqmφ = 1

q

q−1∑
l=0

(−1)ν/2 e−ıνψl Zν(2κρ sin ψl),

where Zν is a solution of Bessel’s equation and ψl = φ + ϑl, ϑl = πl/q, the sums over m can
be evaluated. Passing to the spherical coordinates (κ = k sin θ, kz = k cos θ) and making use
of the identities involving Bessel functions, we get

δErr
a,z = h̄c

2π

q−1∑
l=0

∫ ∞

0
dk k3α′(−)

az (k)[G‖(2kρ sin ψl) − G‖(2kρ sin ϑl)],

δErr
a,φ = h̄c

2π

q−1∑
l=0

∫ ∞

0
dk k3α

′(−)
aφ (k)[Hφ(2kρ,ψl) + Hφ(2kρ, ϑl)],

δErr
a,ρ = h̄c

2π

q−1∑
l=0

∫ ∞

0
dk k3α′(−)

aρ (k)[Hρ(2kρ,ψl) − Hρ(2kρ, ϑl)],

where we defined

G⊥(x) = cos x

x2
− sin x

x3
; G‖(x) = sin x

x
+

cos x

x2
− sin x

x3
,

Hφ(x, ψ) = G‖(x sin ψ) sin2 ψ + 2G⊥(x sin ψ) cos2 ψ,

Hρ(x, ψ) = G‖(x sin ψ) cos2 ψ + 2G⊥(x sin ψ) sin2 ψ.
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We still need to evaluate the k-integrals. From the expressions for α′
aσ (k), these integrals have

the form

A(±)
λ (ω, f ) =

∫ ∞

0
dkf (k)

[
P

1

k + ω
∓ P

1

k − ω

]
eıkλ,

where ω > 0 and λ > 0 is a real parameter. For an analytical function f satisfying,
in the whole complex plane, the condition |f (k)| e−λ|Im[k]| → 0, for |Im [k] | → ∞,
we get A(±)

λ (ω, f ) = ∓ıπf (ω) eıωλ +
∫ ∞

0
dk

k+ω

[
f (k) eıkλ ∓ f (−k) e−ıkλ

]
. Hence, the (rr)

contributions to the potential for each polarizations are given by

V rr
a,z(ρ, φ, q)= 1

4

∑
b

h̄�z
a→b

{
q−1∑
l=0

Urr
‖ (2|kba|ρ sin(φ + πl/q))−

q−1∑
l=1

Urr
‖ (2|kba|ρ sin(πl/q))

}
,

V rr
a,φ(ρ, φ, q) = 1

4

∑
b

h̄�
φ

a→b

{
q−1∑
l=0

Wφ
rr(2|kba|ρ, φ + πl/q) +

q−1∑
l=1

Wφ
rr(2|kba|ρ, πl/q)

}
,

V rr
a,ρ(ρ, φ, q) = 1

4

∑
b

h̄�
ρ

a→b

{
q−1∑
l=0

Wρ
rr(2|kba|ρ, φ + πl/q) −

q−1∑
l=1

Wρ
rr(2|kba|ρ, πl/q)

}
,

where �σ
a→b = 4

h̄
|〈a|dσ |b〉|2|kba|3, and the functions in last equations are defined as

Urr
⊥ (x) = − 1

2x3
(cos x + x sin x); Urr

‖ (x) = − 1

2x3
(cos x + x sin x − x2 cos x),

Wφ
rr (x, ψ) = Urr

‖ (x sin ψ) sin2 ψ + 2Urr
⊥ (x sin ψ) cos2 ψ,

Wρ
rr (x, ψ) = Urr

‖ (x sin ψ) cos2 ψ + 2Urr
⊥ (x sin ψ) sin2 ψ.

The (f r) contribution to the level shift, δEf r
a , can be obtained by a completely analogous

procedure. This contribution depends on the state of the field. Here, we consider the field in
the vacuum state, 〈nkλ〉 = 0. In this particular case, it can be shown that the (f r) dispersion
potential, V

f r
a,σ (ρ, φ), may be obtained from previous equations by the shortcut:

Urr
‖(⊥)(x) −→ U

f r

‖(⊥)(x) = U‖(⊥)(x) − Urr
‖(⊥)(x),

∑
b

−→
∑
b>a

−
∑
b<a

,

where the functions U⊥ and U‖ are defined by (γ is the Euler–Mascheronni constant)

U⊥(x) = 1

πx3
[−F(x) + xG(x)] ; U‖(x) = 1

πx3
[(x2 − 1)F(x) + xG(x) − x],

F(x) =
∫ ∞

0
dt

sin t

t + x
= Ci(x) sin x − si(x) cos x,

G(x) = −
∫ ∞

0
dt

cos t

t + x
= Ci(x) cos x + si(x) sin x = d

dx
F(x),

si(x) = −π

2
+

∫ x

0
dt

sin t

t
, Ci(x) = γ + ln x +

∫ x

0
dt

cos t − 1

t
.

The full dispersive potential of an atom in a state |a〉 is given by the sum of both (rr)

and (f r) contributions, so that Va(ρ, φ, q) = ∑
σ

(
V rr

a,σ (ρ, φ, q) + V
f r
a,σ (ρ, φ, q)

)
. Let

us, then, compute the van der Waals potential between the atom and the wedge. For

5
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this case, the atom is in its ground state (a → g), and assuming spherical symmetry,
|〈g|dz|e〉|2 = |〈g|dφ|e〉|2 = |〈g|dρ |e〉|2 = 1

3 |〈g|d|e〉|2, where the index e specifies an excited
state, we finally obtain

Vg(ρ, φ, q) = 1

2

∑
e

h̄�spt
e→g

{
q−1∑
l=0

U(2kegρ sin(φ + πl/q)) −
q−1∑
l=1

[U‖(2kegρ sin(πl/q))

× cos2(πl/q) − U⊥(2kegρ sin(πl/q)) cos(2πl/q)]

}
, (5)

where U(x) = U‖(x) + U⊥(x) and �
spt
e→g = 4

3h̄ |〈g|d|e〉|2k3
eg. This is the main result of the

present paper. As a check of our result, let us reobtain from the above equation a few known
results existent in the literature. Let us start with the atom–wall interaction. This case
corresponds to take φ0 = π (q = 1). For any distance regime, we get

Vg(ρ, φ, q = 1) = 1

2

∑
e

h̄�spt
e→gU(2kegz) (z := ρ sin φ), (6)

which was shown in [23] to yield the well-known results in the literature. Further, in
order to particularize the above result for the non-retarded and retarded regimes we must
take the appropriate approximations of the functions U⊥ and U‖. For the former (short
distances) we have U⊥(x) � U‖(x) � − 1

2x3 , while for the latter (large distances) we have
U‖(x) � 2U⊥(x) � − 4

πx4 . Substituting into (5) the short-distance behaviour of these functions

as well as the relation �
spt
e→g = 4

3h̄ |〈g|d|e〉|2k3
eg , the non-retarded atom–wall interaction is given

by

V NR
g (z) = − 1

12z3

∑
e

|〈g|d|e〉|2. (7)

Since we assumed spherical symmetry, we may write α
ρ
ge = α

φ
ge = αz

ge =: αge, and from

the definition of α
j

ab given after equation (4), we have αge = 2
3 |〈g|d|e〉|2/(h̄ckeg) (recall that

kge = −keg). Hence, equation (7) can be written in terms of αge as

V NR
g (z) = − h̄c

8z3

∑
e

αgekeg. (8)

Substituting now into (6) the large-distance behaviour of the functions U⊥ and U‖, we get

V R
g (z) = − 3h̄c

8πz4

∑
e

αge = −3h̄cα(0)

8πz4
, (9)

where α(0) is the static polarizability of the atom.
For an atom in the region between two parallel conducting plates, discussed in detail

by Barton [7], we were not able to establish an equivalence analytically. However, we have
checked numerically that both results are in complete agreement.

Now, as our last particular case, we reobtain the retarded potential for the atom–wedge
system calculated by Brevik et al [19]. For large distances, our general result (5) takes the
form (this is called the Casimir–Polder regime)

VCP(ρ, φ, q) = h̄

32πρ4

∑
e

�
spt
e→g

|keg|4
[
−6

q−1∑
l=0

sin−4(φ + πl/q) + 2
q−1∑
l=1

sin−4(πl/q)

]
.

6
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Figure 2. Vg(ρ, ϕ = 0, q) versus ρ for different values of q. For increasing q (closing the wedge)
the interaction becomes stronger, as expected.

Previous summations can be evaluated and the previous result can be cast into the form

VCP(ρ, φ, q) = h̄cα(0)

4πρ4

[
1

90
(q2 − 1)(q2 + 11) − q2

sin2 qφ

(
3q2

2 sin2 qφ
+ 1 − q2

)]
,

considered now valid for every value of q, in perfect agreement with [19].
Figure 2 shows the variation of V (ρ, φ, q), given by equation (5), in terms of ρ for fixed

φ, taken conveniently as φ = φ0/2 (ϕ = 0) and for different values of q. The full potential
is represented by the strong lines: the solid one corresponding to φ0 = π/2, the dashed one
to φ0 = π/3 and the dotted-dashed one to φ0 = π/5. The component of the force along
ρ̂, denoted by Fρ , is attractive. However, looking at equation (6), we note that the last two
contributions are independent of φ and with a repulsive character. In other words, no matter
the value of φ, there is always a repulsive corner contribution to the force Fρ , represented in
figure 2 by the thin lines.

Figure 3 shows Fρ = − ∂Vg

∂ρ
in terms of φ for fixed ρ and for different values of q. Note

that the modulus of Fρ increases as we get closer and closer to each plate. Even for φ = φ0/2
(ϕ = 0), i.e., for points equidistant from both plates forming the wedge, Fρ is not zero, though
it assumes minimum values at these points. Observe, also, that for ϕ = 0 the modulus of
Fρ increases as the angle between the plates diminishes. Naively, one could think this is a
paradoxal result, since the plates are becoming more and more parallel to each other and for
an atom inside two parallel plates there is no component of the force parallel to the plates.
However, to obtain correctly the limit of an atom inside two parallel plates one must not only
diminish the angle between the plates but also take ρ to infinite, with the constraint ρφ0 = a, a

being the distance between the parallel plates. A simple but careful analysis shows that, in
fact, Fρ(ρ, ϕ = 0, q) increases if we maintain ρ fixed and finite and increase q (close to the
wedge).

Figure 4 shows Fφ = − 1
ρ

∂Vg

∂φ
in terms of φ for fixed ρ and for different values of q. In

contrast to what happens to Fρ, Fφ = 0 for ϕ = 0. Besides, Fφ < 0 for negative ϕ and Fφ > 0

7
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Figure 3. Fρ(ρ, ϕ, q) with fixed ρ versus ϕ/φ0 for different values of q and ρ.

Figure 4. Fφ(ρ, ϕ, q) with fixed ρ versus ϕ/φ0 for different values of q and ρ.

for positive ϕ: except for ϕ = 0, the atom is attracted to the nearest plate (apart from a Fρ

component pointing to the corner).

3. Final comments and perspectives

Using an approach based on a master equation, we computed the dispersion force on an
electrically polarizable atom near a perfectly conducting wedge. Our result is valid for both
retarded and non-retarded regimes, generalizing in this way a previous result of the literature

8
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[19], which is valid only in the retarded regime. We checked our calculations by reobtaining
well-known results in the literature, as for instance, the non-retarded and retarded interactions
between an atom and a perfectly conducting wall, given by equations (7) (or equivalently
(8)) and (9). It is worth noting that since the non-relativistic expression |〈g|d|e〉|2 does not
depend on c, the non-retarded potential is independent of c (see equation (7)), as it should be
(the dependence on h̄ comes from |〈g|d|e〉|2). In (8), the dependence on c is just apparent,
since it cancels with that appearing in keg = ωeg/c. We should emphasize, however, that in
the non-retarded regime expression (5) is valid only for φ0 = π/q, with q a positive integer
number and φ0 being the angle of the wedge. We found a full ρ-component of the force which
is attractive. There is, however, a φ-independent repulsive contribution for Fρ , which we
interpreted as a corner contribution. A numerical analysis should be made to see if our results
can be of some relevance in future experiments using this geometry. The method employed
here can be applied in the computation of resonant potentials (excited atoms), but this will
be left for a future work. Our formalism can still be used in the computation of spontaneous
emission rates of an atom near boundaries as the one considered here.
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